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Abstract
Cross-modal retrieval refers to identifying semantically relevant
data across different modalities. However, annotation errors or in-
herent ambiguity can cause semantic inconsistency in sample pairs,
degrading retrieval performance. Prior efforts either relied heavily
on the quality of explicitly dividing clean and noisy subsets, or solely
leveraged carefully selected single anchor information, neglecting
relationships among diverse neighbors. In this paper, we propose a
novelGraph-based Label Propagation (GLP) framework that learns
pseudo-labels via label propagation on a sparse graph, enabling self-
correction of noisy labels. Specifically, each modality’s instances are
treated as nodes, connected via k-nearest neighbor (kNN) search to
form a sparse graph. Pseudo-label vectors are generated for all nodes
within one modality to capture the matching degree of inter-modal
nodes. Through iterative label propagation, the stabilized pseudo-
labels implicitly exploit both intra- and inter-modal relationships
to derive a reliable matching degree. A dynamic queue further en-
hances graph quality by updating high-quality nodes. Experiments
on Flickr30K, MSCOCO, and CC120K show that our method out-
performs state-of-the-art approaches, especially under high noise.
Code is available at https://github.com/njustkmg/MM25-GLP.

CCS Concepts
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies → Machine learning.
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Figure 1: Illustration of GLP. Taking image-text retrieval
as an example, each image and text feature is treated as a
node in a sparse graph, with one modality’s nodes serving as
labeled nodes and the other modality’s nodes as unlabeled.
Through label propagation, the unlabeled nodes can acquire
the matching degree with the labeled nodes.

1 Introduction
Cross-modal retrieval (CMR) [1, 2, 3, 4, 5, 6] aims to identify se-
mantically relevant samples from one modality using a query from
another. However, most existing studies overlook the potential
data noise present in real-world scenarios, where the semantic re-
lationships between sample pairs may not be perfectly matched. In
reality, some widely used datasets, such as Conceptual Captions [7],
are constructed through non-expert annotations or web crawling,
which inevitably leads to mismatches or partial matches, known
as noisy correspondences [8, 9, 10, 11]. Training CMR models on
poorly matched datasets without discrimination can disrupt the
alignment of modality representations in the feature space, ulti-
mately degrading cross-modal retrieval performance [8, 12, 13, 14].

To mitigate the impact of noisy correspondence, a mainstream
strategy focuses on enhancing the discriminability between clean
and noisy pairs, while treating clean pairs as anchor points to cor-
rect noisy ones. Some attempts [11, 12, 15, 16] leverage the memory
effect of neural networks, which prioritizes learning patterns from
well-matched pairs early in training. Binary mixture models, such
as Gaussian-Mixture-Model (GMM) or Beta-Mixture-Model (BMM),
are employed to model the loss probability distribution, catego-
rizing the datasets into clean and noisy subsets. These methods
typically rely on a co-teaching framework to prevent noise accu-
mulation. To avoid misclassification of ambiguous, noisy pairs as
clean, recent works [10, 16, 9] design more nuanced data partition
strategies. For instance, CTPR [10] and CREAM [16] integrate GMM
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predictions to classify the training set into clean, vague, and noisy
subsets. Similarly, UGNCL [9] divides the data into four subsets
based on the uncertainty-aware metric: certain clean and noisy, and
uncertain clean and noisy, subsequently reconstructing labels for
the uncertain subsets.

Following the partitioning of clean and noisy subsets, these
works identify anchor points–the most semantically aligned pairs
within the clean subset, to correct labels in the noisy subset. NCR [8]
and CTPR [10] compute soft labels by measuring the discrepancy
between a target pair’s similarity and batch-averaged similarity of
other pairs. NPC [11] estimates sample noise levels by monitoring
variations in cross-entropy loss when models trained on noisy data
are evaluated against the corresponding clean anchor point.

Despite these advances, existing works always rely on intricate
mechanisms to partition clean and noisy data, and even further
subdivide into granular sets. Unfortunately, a critical limitation
arises when hyperparameters such as confidence thresholds are
misconfigured, leading to misclassification and exacerbating er-
ror accumulation. Furthermore, most methods rectify noisy labels
using only a single clean anchor point, overlooking the broader
neighborhood information embedded in the data manifold.

Inspired by Label Propagation (LP) theory in multi-modal clas-
sification, we regard cross-modal retrieval as a classification proxy,
that is, to match the most similar item among candidate targets.
Based on the assumption of “proximity similarity” of LP, we pro-
pose a novel label correction approach named Graph-based Label
Probagation (GLP), in an end-to-end manner. GLP treats each
modality feature in a batch as a graph node and constructs intra-
modality and inter-modality edges via k-nearest neighbors, leverag-
ing local neighborhood relationships for robust cross-modal simi-
larity estimation. Each node within the same modality is initialized
with a one-hot pseudo-label vector, which is iteratively updated
based on the probability transfer matrix of the graph until stabilized.
Unlike existing works requiring explicit partitioning of clean and
noisy subsets, GLP avoids this dependency by directly integrating
both intra- and cross-modal neighborhood information into simi-
larity computation. Conceptually, for a sample pair with inherent
proximity, LP aggregates features from local neighbors to derive a
robust matching degree estimate. Conversely, pairs lying outside
the K-nearest neighbor radius are assigned a negligible matching
degree due to the graph’s sparsity, effectively truncating their in-
fluence. This selective propagation mechanism ensures cautious
label refinement, mitigating the risk of overfitting to noisy corre-
spondences. In addition, to further ensure the reliability of graph
construction, we maintain a dynamically updated queue to store
some higher-quality sample pairs. Benefiting from the nearly lin-
ear O(E) time complexity of GLP, the sparse graph we constructed
offers significant advantages in training cost. To sum up, the main
contributions of this work are outlined as follows:

• We propose Graph-based Label Probagation (GLP) for robust
cross-modal retrieval, a novel framework to rectify noisy labels
in an end-to-end manner.

• GLP eliminates the need for explicit partitioning of clean and
noisy subsets, fully leveraging both intra-modality and inter-
modality neighborhood information to enable more reliable sim-
ilarity estimation.

• The proposed GLP method is extensively evaluated on three
benchmark datasets (Flickr30K, MSCOCO, and CC120K) and
varying noisy levels, demonstrating its consistent advantages
over current state-of-the-art (SOTA) methods.

2 Related Works
2.1 Noisy Correspondence Learning under CMR
Cross-Modal Retrieval (CMR) [17, 18] aims to search for relevant
items across different modalities. Traditional image-text matching
methods align cross-modal samples through similarity measure-
ments, which can be categorized into two approaches: a) Coarse-
grained metrics [19, 20, 21], focusing on global feature alignment,
and b) Fine-grained metrics [1, 22, 23, 2, 24, 25], which empha-
size evaluating semantic relationships between localized segments.
Recent advances in vision-language models (VLMs) [26, 27], and
pre-trained vision-language models (VLPs) [4] like CLIP [28] have
demonstrated strong performance in cross-modal tasks [29, 30, 31].
Despite their zero-shot capabilities, VLPs remain sensitive to noisy
training data in downstream tasks [11].
Noisy Correspondence Learning (NCL) refers to designing anti-
noise methods that mitigate the negative effects caused by mis-
matched sample pairs within datasets. First introduced by [8], early
works [11, 12, 15, 16, 32] primarily leverage the memory effect
inherent in neural networks to identify clean pairs in the early
training stage, subsequently estimating soft labels for noisy pairs
via co-teaching architectures. Following these early efforts, subse-
quent work refines data partitioning strategies [10, 16, 9] to filter
ambiguous mismatches or construct pseudo-correspondences [33,
34]. In addition, some studies [35, 36, 37] improve performance
by applying constraints based on intrinsic properties observed in
the data. Another approach involves constructing robust loss func-
tions [13, 38, 39] to tackle the challenge of noisy correspondences
(NC). Despite these efforts, existing NCL methods rely on complex
mechanisms to partition clean and noisy data, where improper
hyperparameter settings may lead to sample misclassification and
error accumulation. Additionally, they overlook broader neighbor-
hood information that could enhance label refinement. In contrast,
we propose a lightweight framework that adaptively predicts pair-
matching degrees while maintaining robustness to noise.

2.2 Label Propagation
Label propagation is a graph-based technique for label-efficient
learning tasks [40, 41, 42]. The fundamental assumption behind LP
is that labels change gradually across a graph, with neighboring
nodes tending to have the same label. In transductive learning,
where all test samples are accessible during inference, LP works
by transferring labels from labeled nodes to the unlabeled ones.
Recently, some works [30, 43, 44, 31] have applied label propagation
to Vision-LanguageModels (VLMs) to enhance their performance in
zero-shot or few-shot settings for downstream tasks. [30, 43, 44] are
classification tasks where graphs are constructed on downstream
test data, with text prompts from classes serving as labeled nodes,
and labels are propagated to visual nodes. In a classification scenario,
text nodes are similar to class prototypes, with fewer text nodes
and more image nodes. In this work, LP is tailored for cross-modal
retrieval. We perform a bidirectional inference process, and the
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Figure 2: Framework of our proposed GLP. Given a batch of image-text pairs, features are extracted via momentum encoders,
combined with historical features from a queue to form feature sets P and Q. Intra-modal transition matrices S𝑝𝑝 and S𝑞𝑞 are
constructed via 𝑘-NN searchwithin eachmodality separately, while cross-modal transitionmatrices S𝑝𝑞 and S𝑞𝑝 are derived from
𝑘-NN search across modalities. A label matrix F is initialized and iteratively refined via LP until stabilized. The bidirectionally
constrained iterative results are denoted as P∞ and Q∞, respectively. Their fused output B is employed to reweight the original
InfoNCE loss. High-confidence sample pairs are added to the queue following the First-In-First-Out (FIFO) policy.

number of labeled nodes in the graph is larger and more sparsely
distributed.

3 Methodology
In this section, we present our GLP framework, which leverages the
relationships between intra-modal and inter-modal neighboring
nodes to optimize the matching degree of sample pairs. In Sec. 3.1,
we define the cross-modal retrieval problem. In Sec. 3.2, we in-
troduce the graph construction method, detailing the process of
generating pseudo-label vectors and using label propagation to
achieve a stable state for pseudo-labels, thereby enabling noise
self-correction. In Sec. 3.3 we describe the integration of a queue
mechanism to further enhance the stability of the graph.

3.1 Problem Definition
Cross-modal retrieval [28, 4, 45] lies in mapping data from differ-
ent modalities into an aligned shared space. Consider the image-
text retrieval task as an example. Given a multi-modal dataset
D = {(𝐼𝑖 ,𝑇𝑖 ), 𝑦𝑖 }𝑁𝑖=1 of size 𝑁 , where (𝐼𝑖 ,𝑇𝑖 ) represents 𝑖𝑡ℎ image-
text pair and 𝑦𝑖 is the label (𝑦𝑖 = 1 for a match, 𝑦𝑖 = 0 for a
mismatch). The goal is to obtain a metric space where, for an input
image query, text samples semantically aligned with it are closer,
and misaligned ones are farther.

CLIP [28] is a pretrained vision-language model that performs a
proxy task, specifically predicting the correct pairing between text
and images. The CLIP model consists of an image encoder 𝑓 (·) and
a text encoder 𝑔(·). Following previous SOTA [11], we adopt the
pretrained CLIP as the backbone for the subsequent construction
of the cross-modal retrieval model.
InfoNCE [46] is the standard optimization objective in cross-modal
retrieval tasks. The objective is to maximize the similarity between
the target sample and the positive samples while minimizing the
similarity between the target sample and the negative samples, thus
learning feature vectors with representational capabilities. For the
similarity matrix computed from a training batch of size 𝑛, InfoNCE
considers the elements on the diagonal of the matrix as positive
samples and the remaining (𝑛 − 1) samples as negative samples,
which is defined as follows:

LInfoNCE (𝐼 ,𝑇 ) = − 1
𝑛

𝑛∑︁
𝑖=1

log

(
exp(Sim(𝐼𝑖 ,𝑇𝑖 )/𝜏)∑𝑛
𝑗=1 exp(Sim(𝐼𝑖 ,𝑇𝑗 )/𝜏)

)
, (1)

L𝑐𝑒 = LInfoNCE (𝐼 ,𝑇 ) + LInfoNCE (𝑇, 𝐼 ), (2)

where Sim(𝐼𝑖 ,𝑇𝑗 ) represents the similarity between the query sam-
ple 𝐼𝑖 and the candidate sample 𝑇𝑗 , which is typically measured
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using cosine similarity:

Sim(𝐼𝑖 ,𝑇𝑗 ) =
𝑓 (𝐼𝑖 ) · 𝑔(𝑇𝑗 )

∥ 𝑓 (𝐼𝑖 )∥ · ∥𝑔(𝑇𝑗 )∥
, (3)

𝜏 is the temperature parameter, which adjusts the scale of similarity
scores. A smaller 𝜏 makes the contrastive learning process more
sensitive.

3.2 Label Propagation on the Graph
3.2.1 Graph Construction
Given a training batch of size 𝑛, we define image and text in-
stance subsets as I = {𝐼1, 𝐼2, ..., 𝐼𝑛} and T = {𝑇1,𝑇2, ...,𝑇𝑛}. Both
are encoded into feature representations P = {p1, p2, ..., p𝑛} and
Q = {q1, q2, ..., q𝑛} using uni-modal encoders 𝑓 (·) and𝑔(·) of CLIP,
respectively. Each feature instance in P and Q is treated as a node
in a graph, with the adjacency matrix A ∈ R(𝑛+𝑛)×(𝑛+𝑛) encoding
pairwise similarity scores. Inspired by the decomposition strategy
in [47], we decompose A into intra-modal and inter-modal blocks
as below:

A =

[
A𝑝𝑝 A𝑝𝑞

A𝑞𝑝 A𝑞𝑞

]
, (4)

where A𝑝𝑝 ,A𝑞𝑞 ∈ R𝑛×𝑛 capture intra-modal (image-to-image, text-
to-text) similarities, and A𝑝𝑞,A𝑞𝑝 ∈ R𝑛×𝑛 represent cross-modal
relationships. Notably, the modality gap [48] inherent in vision-
language models causes imbalanced similarity distributions be-
tween intra- and inter-modal features. To mitigate this, we avoid
standard 𝑘-nearest neighbor (kNN) searches over the union set
U = P + Q, which disproportionately favors intra-modal connec-
tions. Instead, we perform separate kNN searches:

(1) Intra-modal: Within P and Q to construct A𝑝𝑝 and A𝑞𝑞 .
(2) Cross-modal: Between P and Q to populate A𝑝𝑞 and A𝑞𝑝 .

We denote by kNN𝑝 (·) the 𝑘-nearest neighbors searched within the
image feature set P, and by kNN𝑞 (·) those searched within the text
feature set Q. Formally, entries in A are defines as:

𝑎𝑖 𝑗 =


p⊤
𝑖
p𝑗 , if p𝑗 ∈ kNN𝑝 (p𝑖 ) and p𝑖 ∈ kNN𝑝 (p𝑗 ) and 𝑖 ≠ 𝑗,

q⊤
𝑖
q𝑗 , if q𝑗 ∈ kNN𝑞 (q𝑖 ) and q𝑖 ∈ kNN𝑞 (q𝑗 ) and 𝑖 ≠ 𝑗,

p⊤
𝑖
q𝑗 , if p𝑖 ∈ kNN𝑝 (q𝑗 ) and q𝑗 ∈ kNN𝑝 (p𝑖 ),

0, otherwise.
(5)

As we only consider the affinities around each query node and its
nearest neighbors, the adjacency matrix is sparse.

3.2.2 Label Propagation by Walking on the Graph
The idea of label propagation is to assign labels to unlabeled nodes
in a graph by leveraging the information from labeled nodes. This
is achieved by constructing a set of label vectors and iteratively
propagating label information across the graph structure. To pre-
pare for label propagation, we first convert the adjacency matrix A
into a transition matrix through normalization. Given that A com-
prises blocks of similarity scores from distinct embedding spaces,
we decompose A and normalize each block independently. The
intra-modal block A𝑝𝑝 and A𝑞𝑞 are symmetrically normalized as

follows: {
S𝑝𝑝 = D−1/2

𝑝𝑝 A𝑝𝑝D
−1/2
𝑝𝑝 ,

S𝑞𝑞 = D−1/2
𝑞𝑞 A𝑞𝑞D

−1/2
𝑞𝑞 ,

(6)

where D𝑝𝑝 = Diag(A𝑝𝑝1𝑛),D𝑞𝑞 = Diag(A𝑞𝑞1𝑛) are the degree
matrices, and 1𝑛 is an 𝑛-dimensional all-ones vector. Conversely,
the cross-modal blocks A𝑝𝑞 and A𝑞𝑝 are 𝑙1-normalized row-wise
to produce S𝑝𝑞 and S𝑞𝑝 . The overall transition matrix S is then
composed as:

S =

[
S𝑝𝑝 S𝑝𝑞
S𝑞𝑝 S𝑞𝑞

]
. (7)

Considering the two-modalities scenario, we treat nodes from one
modality as labeled and nodes from the other as unlabeled. This
setup enables tailoring label propagation to estimate cross-modal
matching degrees by assigning labels to unlabeled nodes. Specifi-
cally, we adopt a bi-directional propagation strategy to fully exploit
the mutual associations between modalities. For clarity of exposi-
tion, we designate nodes in subset P (image modality) as the labeled
nodes and those in subset Q (text modality) as unlabeled nodes. For
a given node p𝑖 ∈ P, we construct a pseudo-label vector:

f𝑖 = [f⊤𝑝,𝑖 , f
⊤
𝑞,𝑖 ]

⊤, (8)

where f𝑝,𝑖 ∈ R𝑛 and f𝑞,𝑖 ∈ R𝑛 represent similarity scores between
p𝑖 and nodes in subsets P and Q, respectively. The initial vector
f(0)
𝑝,𝑖

is a one-hot vector with a single non-zero element at index 𝑖 ,

whereas f(0)
𝑞,𝑖

is initialized as the zero vector. The combination of all
f𝑖 for nodes in P forms the pseudo-label matrix F ∈ R(2𝑛)×𝑛 . Given
the transition matrix S, label propagation is an iterative process
given by

f(𝑡+1)
𝑖

= 𝛼Sf (𝑡 )
𝑖

+ (1 − 𝛼)f (0)
𝑖

, (9)
where 𝛼 ∈ (0, 1) is the propagation magnitude. Substituting Eq.7
and Eq.8 into Eq.9, the component-wise updates become:{

f (𝑡+1)
𝑝,𝑖

= 𝛼S𝑝𝑝 f
(𝑡 )
𝑝,𝑖

+ 𝛼S𝑝𝑞f
(𝑡 )
𝑞,𝑖

+ (1 − 𝛼)f (0)
𝑝,𝑖

,

f (𝑡+1)
𝑞,𝑖

= 𝛼S𝑞𝑝 f
(𝑡 )
𝑝,𝑖

+ 𝛼S𝑞𝑞f
(𝑡 )
𝑞,𝑖

+ (1 − 𝛼)f (0)
𝑞,𝑖

.
(10)

To prevent direct connections among labeled nodes, which is benefi-
cial since each node corresponds to a different class, we set S𝑝𝑝 = 0.
Moreover, our primary interest lies in estimating the similarity
between the labeled node p𝑖 and all heterogeneous-modality nodes
in Q, i.e., the estimation of f𝑞,𝑖 . Under these considerations, the
update rule for f𝑞,𝑖 simplifies to:

f(𝑡+1)
𝑞,𝑖

= 𝛼S𝑞𝑞f
(𝑡 )
𝑞,𝑖

+ 𝛼2S𝑞𝑝S𝑝𝑞f
(𝑡−1)
𝑞,𝑖

+ 𝛼 (1 − 𝛼)f(0)
𝑝,𝑖

. (11)

This iterative process admits a closed-form stationary solution:

f∞𝑞,𝑖 = (𝐼 − 𝛼S𝑞𝑞 − 𝛼2S𝑞𝑝S𝑝𝑞)−1 · 𝛼 (1 − 𝛼)f (0)
𝑝,𝑖

. (12)

Given that each f (0)
𝑝,𝑖

, 𝑖 ∈ {0, 1, ..., 𝑛} is a one-hot vector, we can
express the collective solution as a label matrix:

Q∞ = 𝛼 (1 − 𝛼) (𝐼 − 𝛼S𝑞𝑞 − 𝛼2S𝑞𝑝S𝑝𝑞)−1S𝑞𝑝 . (13)

Similarly, we obtain

P∞ = 𝛼 (1 − 𝛼) (𝐼 − 𝛼S𝑝𝑝 − 𝛼2S𝑝𝑞S𝑞𝑝 )−1S𝑝𝑞 . (14)

The terms S𝑞𝑝 and S𝑝𝑞 serve as cross-modal similarity matrices
responsible for transmitting information between different modal-
ities. From a manifold learning perspective, the inverse matrix
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(𝐼 − 𝛼S𝑞𝑞 − 𝛼2S𝑞𝑝S𝑝𝑞)−1 and (𝐼 − 𝛼S𝑝𝑝 − 𝛼2S𝑝𝑞S𝑞𝑝 )−1 facilitate
smoothing of predictions along the intrinsic data geometry within
modality Q and P, respectively, while incorporating second-order
cross-modal paths to enhance the expressiveness of the propaga-
tion manifold. After column-wise normalization of P∞ and Q∞, the
bi-directional propagation result is computed as:

B = 𝜆P∞norm + (1 − 𝜆) (Q∞
norm)⊤ . (15)

where the 𝑖-th diagonal element 𝒃𝒊 ofB denotes thematching degree
of the 𝑖-th image-text pair in the current batch.

Leveraging these matching degrees, we re-weight the InfoNCE
loss at the sample level, yielding the refined loss function:

LRe-InfoNCE (𝐼 ,𝑇 ) = − 1
𝑁

𝑁∑︁
𝑖=1

𝒃𝒊 log

(
exp(Sim(𝐼𝑖 ,𝑇𝑖 )/𝜏)∑𝑁
𝑗=1 exp(Sim(𝐼𝑖 ,𝑇𝑗 )/𝜏)

)
.

(16)

3.3 Dynamic Queue for Robust Pseudo-label
Estimation

In scenarios with severe noisy correspondence, the affinity matrix
tends to become unreliable because of the inherent fragility in cross-
modal connections. To enhance the robustness of label propagation,
we incorporate two key components: (1) a queuemechanism storing
high-quality historical sample pairs, and (2) a momentum-based
model for stable feature representation.
Queue Mechanism. To improve the robustness of the transition
matrix, we implement a fixed-capacity memory queue that archives
high-consistency historical samples. For each batch, we compute
pairwise matching degrees 𝑏𝑖 and select reliable pairs exceeding a
predefined threshold𝛾 (where 𝑏𝑖 > 𝛾 ) for queue inclusion. The label
propagation graph is constructed by augmenting current batch sam-
ples with historically preserved samples from the queue, thereby ex-
tending the context for pseudo-label generation. The queue follows
a First-In-First-Out (FIFO) replacement policy with dynamic updat-
ing, ensuring only the most discriminative samples are retained.
This mechanism guarantees that label propagation consistently
operates on high-fidelity, information-rich exemplars.
Momentum Model. To ensure stable pseudo-label generation,
we adopt a momentum-encoded model following the MoCo [49]
paradigm. This design serves two critical purposes:

• Representation Space Stabilization: The momentum model
maintains feature consistency across training iterations through
exponential moving averaging (EMA), mitigating representa-
tion drift when utilizing historical samples from the queue.

• Smooth Transition Modeling: The gradually evolved feature
space yields more reliable similarity measurements for graph
construction in label propagation.

The parameters are updated via:

𝜃
(𝑡 )
mom = 𝛽𝜃

(𝑡−1)
mom + (1 − 𝛽)𝜃 (𝑡 ) , (17)

where 𝜃 (𝑡 )mom denotes the momentum-encoded parameters at step 𝑡 .
This EMA operation produces noise-resistant features with reduced
temporal variance, facilitating more optimized affinity matrix con-
struction compared to direct usage of raw features. The algorithmic
workflow is presented in Algorithm 1.

Algorithm 1 Pipeline of learning with our GLP method.

1: Input:Multi-modal dataset D = {(𝐼𝑖 ,𝑇𝑖 ), 𝑦𝑖 }𝑁𝑖=1
2: Initialize parameters for model𝑀 and its momentum version

𝑀mom, an empty queue J .
3: for each epoch 𝑡 = 1, 2, . . . ,𝑇 do
4: for each minibatch 𝐵 from D do
5: Compute instance features using𝑀mom: 𝑓 (·), 𝑔(·)
6: Combine batch features and queue features to get sub-

sets P and Q
7: Construct transition matrix S by Eq.5,6,7
8: Get stabilized pseudo-label matrix P∞ and Q∞ by

Eq.14,13
9: Combine bi-directional LP result B by Eq.15
10: Select high-fidelity pairs and add them to queue J
11: Compute instance features using𝑀 : 𝑓 ′ (·), 𝑔′ (·)
12: Train𝑀 by optimizing the sample-wise reweighted loss

using Eq.16
13: Update𝑀mom by Eq.17
14: end for
15: end for
16: Output: Refined model𝑀 and its momentum version𝑀mom

4 Experiments
4.1 Datasets and Performance Measurements
Datasets. Following the experimental settings and dataset splits
in NPC [11], we evaluate our method on three widely-used image-
text matching benchmarks, i.e., Flickr30K [50], MSCOCO [51], and
Conceptual Captions [7], where Flickr30K and MSCOCO contain
the synthetic noise and Conceptual Captions contains the real-
world noise. The details in these datasets are delineated as follows:
• Flickr30K contains 31,783 images with 5 captions each. We
assign 1,000 image-text pairs for validation, 1,000 image-text
pairs for testing, and the rest for training.

• MSCOCO includes 123,287 images with 5 captions each. We
assign 25,000 image-text pairs for validation, 5,000 image-text
pairs for testing, and the rest for training. MSCOCO can be either
evaluated using the whole 5,000 test set or an average of 5-fold
1,000 test sets [52].

• Conceptual Captions is a large-scale dataset automatically har-
vested from the Internet; therefore, about 3%-20% image-text pairs
in the dataset are mismatched or weakly-matched [7]. Following
NPC [11], we use a subset named CC120K in our experiments,
with splits of 93,656 training, 1,000 validation, and 1,000 test
image-text pairs.

Evaluation Protocol. We evaluate the retrieval performance
with the recall rate at K (R@K) metric. In a nutshell, R@K measures
the proportion of relevant items retrieved within the top K items
closest to the query. In our experiments, we take image and text as
queries, respectively, and report R@1, R@5, R@10 results and their
sum RSUM for a comprehensive evaluation.

4.2 Implementation Details
As a general framework, GLP can be applied to many existing cross-
modal matching models. Same as NPC [11], we implement GLP
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Table 1: Retrieval Performance Comparison on Flickr30K and MSCOCO datasets on varying noisy levels.

Noise Ratio Method
Flickr30K MSCOCO 1K

Image→ Text Text→ Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0%

NCR 77.3 94.0 97.5 59.6 84.4 89.9 78.3 95.8 98.5 63.3 90.4 95.8
DECL 79.8 94.9 97.4 59.5 83.9 89.5 79.1 96.3 98.7 63.3 90.1 95.6
BiCro 81.7 95.3 98.4 61.6 85.6 90.8 79.1 96.4 98.6 63.8 90.4 96.0
PC2 78.7 94.8 97.0 60.0 84.4 89.8 79.1 96.5 98.8 64.0 90.3 95.6
CLIP 86.2 97.6 99.2 72.9 92.3 96.0 79.9 95.1 98.1 65.0 90.3 98.1
NPC 87.9 98.1 99.4 75.0 93.7 97.2 82.2 96.5 98.7 68.3 92.0 98.7
GLP 88.9 98.1 99.4 75.1 93.4 96.7 81.2 96.0 98.5 67.2 91.4 98.5

20%

NCR 73.5 93.2 96.6 56.9 82.4 88.5 77.7 95.5 98.2 62.5 89.3 95.3
DECL 77.5 93.8 97.0 56.1 81.8 88.5 77.5 95.9 98.4 61.7 89.3 95.4
BiCro 78.1 94.4 97.5 60.4 84.4 89.9 78.8 96.1 98.6 63.7 90.3 95.7
L2RM 77.9 95.2 97.8 59.8 83.6 89.5 80.2 96.3 98.5 64.2 90.1 95.4
PC2 78.7 94.9 96.9 59.8 83.9 89.6 77.8 95.7 98.4 62.8 89.7 95.3
CLIP 82.3 95.5 98.3 66.0 88.5 93.5 75.0 93.1 97.2 58.7 86.1 97.2
NPC 87.3 97.5 98.8 72.9 92.1 95.8 79.9 95.9 98.4 66.3 90.8 98.4
GLP 88.1 98.2 99.4 74.1 93.3 96.3 81.0 95.9 98.4 66.4 90.9 98.4

40%

NCR 68.1 89.6 94.8 51.4 78.4 84.8 74.7 94.6 98.0 59.6 88.1 94.7
DECL 72.7 92.3 95.4 53.4 79.4 86.4 75.6 95.5 98.3 59.5 88.3 94.8
BiCro 74.6 92.7 96.2 55.5 81.1 87.4 77 95.9 98.3 61.8 89.2 94.9
L2RM 75.8 93.2 96.9 56.3 81.0 87.3 77.5 95.8 98.4 62.0 89.1 94.9
PC2 75.8 93.5 96.9 57.5 81.9 88.2 77.4 95.8 98.4 62.1 89.4 95.1
CLIP 76.2 93.3 96.5 59.4 85.0 90.9 70.7 91.7 96.2 54.7 83.4 96.2
NPC 85.6 97.5 98.4 71.3 91.3 95.3 79.4 95.1 98.3 65.0 90.1 98.3
GLP 87.9 98.1 99.4 73.8 92.9 96.5 80.2 95.8 98.5 66.6 90.8 98.5

60%

NCR 13.9 37.7 50.5 11.0 30.1 41.4 0.1 0.3 0.4 0.1 0.5 1.1
DECL 65.2 88.4 94.0 46.8 74.0 82.2 73.0 94.2 97.9 57.0 86.6 93.8
BiCro 67.6 90.8 94.4 51.2 77.6 84.7 73.9 94.4 97.8 58.3 87.2 93.9
L2RM 70.0 90.8 95.4 51.3 76.4 83.7 75.4 94.7 97.9 59.2 87.4 93.8
PC2 70.8 90.3 94.4 53.1 79.0 85.9 74.2 94.4 97.8 58.9 87.5 93.8
CLIP 66.3 87.3 93.0 52.1 78.8 87.4 67.0 88.8 95.0 49.7 79.6 75.0
NPC 83.0 95.9 98.6 68.1 89.6 94.2 78.2 94.4 97.7 63.1 89.0 97.7
GLP 88.2 98.0 99.2 72.2 92.2 96.2 80.5 95.9 98.5 66.5 90.6 98.6

80%

NCR 1.5 6.2 9.9 0.3 1.0 2.1 0.1 0.3 0.4 0.1 0.5 1.0
DECL 53.4 78.8 86.9 37.6 63.8 73.9 64.8 90.5 96.0 49.7 81.7 90.3
BiCro 2.3 9.2 17.2 2.6 10.2 16.8 62.2 88.6 94.6 47.4 79.2 88.5
L2RM 55.7 80.8 87.8 39.4 65.4 74.9 69.0 91.9 96.4 52.6 82.4 90.3
CLIP 65.9 88.5 93.6 48.7 76.0 85.1 67.5 90.2 95.3 49.7 78.8 95.3
NPC 79.3 93.1 97.1 59.6 84.6 90.8 73.9 92.8 96.6 59.1 86.4 96.6
GLP 84.9 97.3 99.3 69.9 90.7 95.0 79.0 95.0 98.1 64.6 89.7 98.1

based on CLIP [28]. The baselines of our method include CLIP with
ViT-B/32 and NPC [11]. All the methods are trained on a single
RTX 3090 GPU optimized by AdamW optimizer coupled with a
cosine annealing rate scheduler. We start training GLP with the
learning rate of 5e-7 with a weight decay of 0.2. In all experiments,
we train the model for 5 epochs with a mini-batch size of 256, and
the hyperparameter 𝛽 is set to 0.99.

4.3 Comparison with Advanced Methods
Quantitative Comparison. To illustrate the effectiveness, we com-
pare GLP with various approaches, including noise-robust learning
methods based on SGRAF [22] such as NCR [8], DECL [38], Bi-
Cro [12], L2RM [34] and PC2 [33], as well as CLIP-based method
including CLIP with fine-tuning [28] and NPC [11]. The results
are shown in Table1. Our method, GLP, significantly outperforms

all methods across all noise levels. Notably, on Flickr30K with an
80% noise ratio, GLP shows a substantial improvement over NPC,
with a significant R@1 performance gap. Specifically, GLP achieves
an average improvement of 2.7% in R@1 score, higher than NPC
in image-to-text (i2t) matching, and an average improvement of
3.2% higher R@1 score in text-to-image (t2i) matching. Moreover,
as the noise ratio increases, the performance gap between GLP and
clip-based methods becomes even more pronounced. For example,
on the MSCOCO 1K set, when the noise ratio increases from 20% to
80%, the R@1 performance gap between GLP and NPC widens from
0.8% to 5.6% on i2t, and from 1.1% to 5.1% on t2i. This phenomenon
is powerful to prove the effectiveness of GLP on robust learning.
Stability Comparison. In addition to the effectiveness of the
methods, we further analyze the stability advantage of GLP un-
der varying noise levels. Fig 3 shows the average R@1 performance
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Figure 3: Average R@1 with Variance Comparison.
variations of different methods under different noise ratios. For
fairness, we selected two SGRAF-based methods, DECL and L2RM,
which perform optimally at high noise levels, as well as the NPC
method based on CLIP. It can be observed that GLP outperforms
all other methods across all noise ratios. Meanwhile, as the noise
ratio increases, the performance decline of GLP is significantly
smaller than that of other methods. Furthermore, we calculated the
variance of each method at different noise ratios to quantify the
stability of the methods. GLP exhibits remarkable stability, with a
variance of only 2.9%, significantly outperforming all other meth-
ods. Compared to the baseline CLIP, GLP shows a 58.7% reduction
in variance, and compared to NPC, a 18.9% reduction. The decrease
in variance indicates that GLP significantly improves the stability
of performance.

Table 2: Retrieval Performance Comparison on CC120K.

Method Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10

CLIP 67.9 88.9 93.1 67.6 88.0 92.8
NPC 71.2 90.9 94.7 71.8 90.8 94.2
PAU 70.7 91.0 94.7 69.6 90.0 94.2
GLP 72.0 90.9 94.9 72.2 90.7 94.3

Results on Real-world Noise To substantiate the comprehensive
performance assessment, we also report quantitative results on
the CC120K dataset, which contains real-world noisy correspon-
dences (NCs) and better reflects industrial scenarios. According to
the results shown in Table 2, GLP demonstrates competitive per-
formance in both Image-to-Text and Text-to-Image retrieval tasks.
Specifically, GLP achieves an R@1 of 72% for Image-to-Text, which
outperforms CLIP (67.9%) and is comparable to NPC (71.2%). In
the Text-to-Image task, GLP achieves an R@1 of 72.2%, slightly
outperforming NPC (71.8%) and surpassing CLIP (67.6%). Overall,
GLP surpasses CLIP in both retrieval tasks and provides similar or
better performance compared to NPC, establishing it as a strong
method for cross-modal retrieval tasks on the CC120K dataset.

4.4 Comparison with CLIP-based Methods
To make a fairer performance comparison, we also compared GLP
with more CLIP-based methods. These methods [3] [53] [54] focus
on studying the ambiguous relationships between cross-modal data
pairs, thus implicitly addressing the NC problem.We present results
on different noise levels using the MSCOCO 1K and MSCOCO 5K

sets. In Table 3, under different noise levels, GLP maintains a strong
performance, particularly with 20% and 50% noise. For 20% noise,
GLP achieves 73.7% in 1K R@1 and 55.2% in 5K R@1, significantly
outperformingmethods like VSE and PCME++. Evenwith 50% noise,
GLP still outperforms most methods, demonstrating its robustness
in handling noisy data. Specifically, GLP achieves 71.3% in 1K R@1,
which is much higher than VSE (38.5%) and PCME (65.8%).

Table 3: Retrieval performance under different noise levels.

noise method 1K R@1 5K R@1 1K RSUM

20%

VSE 72.0 51.4 520.2
PCME++ 70.8 49.5 522.4
PAU 71.4 51.7 521.5
CLIP 66.8 47.2 507.2
NPC 73.1 53.8 529.8
GLP 73.7 55.2 530.9

50%

VSE 38.5 18.4 390.5
PCME++ 65.7 44.0 503.9
PAU 69.3 45.3 513.4
CLIP 60.9 41.4 486.0
NPC 71.3 51.9 523.4
GLP 72.9 54.0 528.4

4.5 Further Analysis
4.5.1 Ablation Study
To investigate the contribution of each component in our frame-
work, we conduct ablation studies under two noise settings (40%
and 60%) on the Flickr30K dataset. The results are summarized in
Table 4. Specifically, we examine the effect of three key components:
matching degree re-weight (𝑏𝑖 ), online queue (Que), and momen-
tum updating (Mom). We observe that removing any individual
component leads to a performance drop across both image-to-text
and text-to-image retrieval tasks. Under the 40% noise setting,
Table 4: Ablation studies. The best results aremarked in bold.

Noise Components Image→ Text Text → Image
𝑏𝑖 Que Mom R@1 R@5 R@10 R@1 R@5 R@10

40%
✓ ✓ ✓ 88.6 98.1 99.4 73.5 92.9 96.5
✓ ✓ 86.0 97.8 99.3 72.4 91.9 96.0
✓ ✓ 85.6 98.0 99.3 72.6 92.5 96.0
✓ 87.4 97.7 99.0 72.6 92.3 95.9

76.2 93.3 96.5 59.4 85.0 90.9

60%
✓ ✓ ✓ 88.2 98.0 99.2 72.2 92.2 96.2
✓ ✓ 87.2 97.3 99.0 70.3 91.3 95.4
✓ ✓ 86.4 97.1 99.2 70.5 91.1 95.4
✓ 86.2 96.7 99.1 69.9 91.1 95.0

66.3 87.3 93.0 52.1 78.8 87.4

removing the queue or momentum update leads to a noticeable de-
crease in performance, suggesting their essential roles in stabilizing
training and enhancing robustness. Notably, when all components
are removed, the performance drops significantly (e.g., Image-to-
Text R@1 drops from 88.6 to 76.2, and Text-to-Image R@1 from 73.5
to 59.4), indicating that each module contributes positively. When
the noise level increases to 60%, the performance gap becomes more
pronounced. The full model achieves the best performance with
image-to-text R@1 of 88.2 and text-to-image R@1 of 72.2. These
results validate the necessity of each component and demonstrate
the effectiveness and robustness of our proposed design in noisy
correspondence scenarios.
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Figure 4: We visualize the distribution of matching degrees for clean and noisy pairs at different training stages of our GLP,
which is conducted on Flickr30K under 40% NCs.

1. Someone in a blue shirt and hat is standing on stair
and leaning against a window. (bi=0.998)
2. Two people use a plumb line on the ground while a
woman in a gray sweater looks on. (bi=0.037)
3. A man in a blue shirt is standing on a ladder
cleaning a window. (bi=1)
4. The black dog is running on the grass. (bi=0.012)
5. A blond-haired boy sits on a red chair next to a
black guitar and looks at a book. (bi=0.055)

1. White dog with brown ears
standing near water. (bi=1)
2. Car racing on a dirt road. (bi=0.001)
3. A white dog shakes on the edge of
a beach with an orange ball. (bi=1)
4. Attendees for a presentation or
lecture sit in blue chairs. (bi=0.022)
5. White dog playing with a red ball
on the shore near the water. (bi=0.987)

Figure 5: Examples from Flickr30K dataset. Each image has 5 annotated captions. The GT captions are marked in green, while
the NC captions are highlighted in red. The corresponding average refined weight (𝑏𝑖 ) for each pair is displayed alongside.

4.5.2 Hyperparameter Analysis
GLP involves three key hyperparameters: 𝛼, 𝑘𝑛𝑛𝑖 and 𝑘𝑛𝑛𝑐 , with
their respective impacts shown in Fig 6. Parameter 𝛼 controls the
strength of label propagation, balancing the influence of the propa-
gated labels and the original labels during each update. Within the
range of [0, 1], GLP consistently delivers stable performance, with
the optimal outcome achieved when 𝛼 = 0.9. This setting was main-
tained across all subsequent experiments. 𝑘𝑛𝑛𝑖 and 𝑘𝑛𝑛𝑐 refer to the
number of k-nearest neighbors searched within the same modality
and across different modalities, respectively. Optimal performance
is achieved when using 2 intra-modal and 15 cross-modal near-
est neighbors. Moreover, the retrieval performance is not highly
sensitive to the specific choices of 𝑘𝑛𝑛𝑖 and 𝑘𝑛𝑛𝑐 , indicating the
robustness of GLP to hyperparameter settings. Furthermore, we
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Figure 6: Performance under different hyper-parameters of
GLP on Flickr30K under 40% NCs.

investigated the impact of queue capacity on performance when
incorporating features from the queue into the graph construction
process. With a batch size of 256, we compared the results for differ-
ent queue lengths, specifically 10, 100, and 500. The experimental
results indicate that a larger queue capacity leads to a greater im-
provement in performance. This is consistent with our hypothesis
that utilizing high-quality matching pairs for graph construction
contributes to the stability of the graph.

Table 5: Comparison of experimental results with different
queue capacities in graph construction.

Q_len Image → Text Text → Image Avg R@1
R@1 R@5 R@10 R@1 R@5 R@10

10 86.10 97.80 99.30 72.42 91.91 96.01 79.26
100 87.90 98.10 99.40 73.84 92.92 96.46 80.87
500 87.5 98.5 99.5 73.86 92.98 96.36 80.68

4.6 Visualize Analysis
To better demonstrate the scientific validity of GLP, we carry out ex-
periments under 40% noise on Flickr30K to visually investigate the
evolution of matching degree in the training process. As shown in
Fig 4, as the training progressed, we observe an improvement in the
model’s ability to distinguish clean samples, which demonstrates
the effectiveness of our method. Furthermore, we present repre-
sentative examples from the Flickr30K in Fig 5, which illustrates
the average refined weight (𝑏𝑖 ) for each sample pair across five
training epochs. The results demonstrate a remarkable discrepancy
between the same image with Ground-Truth (GT) annotations and
Noisy-Correspondence (NC) annotations, confirming that the GLP
can effectively discriminate between clean and noisy pairs.

5 Conclusion
This paper focuses on noisy correspondence in cross-modal re-
trieval, which introduces mismatched pairs and degrades perfor-
mance. To address this problem, we present GLP, a novel framework
that utilizes both intra-modal neighbors and cross-modal neighbors
to estimate an image-text pair’s matching degree, thus reweighting
the InfoNCE loss. By tailoring label propagation to the cross-modal
retrieval task, our GLP is a concise framework without using co-
teaching. Meanwhile, we conduct experiments on three widely used
datasets to verify the effectiveness of our method in both synthetic
and real-world noise correspondences.
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